Saturday, December 22, 2012

makalah mesin bensin


MAKALAH MESIN BENSIN



DISUSUN OLEH :
Xxxxxxxxxxxxxxxxxxxxxxxxxx
Xxxxxxxxxxxxxxxxxxxxxxxxxxx
Xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

PROGRAM STUDI TEKNIK EKSPLORASI PRODUKSI MIGAS
POLITEKNIK AKAMIGAS CEPU
2010/2011

KATA PENGANTAR

Puji syukur kami ucapkan atas kehadirat Allah SWT, karena dengan rahmat dan karunia-Nya kami masih diberi kesempatan untuk menyelesaikan makalah ini.Tidak lupa penulis ucapkan terima kasih kepada dosen pembimbing dan teman-teman yang telah memberikan dukungan dalam menyelesaikan makalah ini.Penulis menyadari bahwa dalam penulisan makalah ini masih banyak kekurangan, oleh sebab itu penulis sangat mengharapkan kritik dan saran yang membangun. Semoga dengan selesainya makalah ini dapat bermanfaat bagi pembaca dan teman- teman.



DAFTAR PUSTAKA
KATA PENGANTAR   .....................................................................................................
DAFTAR ISI   ...................................................................................................................
BAB 1. PENDAHULUAN................................................................................................
A.    Latar Belakang
B.     Pembatasan Masalah
C.     Tujuan
BAB II. PEMBAHASAN..................................................................................................
A.    Pengertian Mesin Bensin
B.     Siklus Otto
C.     Prinsip Kerja Mesin Bensin
D.    Sistem Pengapian Motor Bensin
E.     Mesin Bensin 4 Tak
F.      Mesin Bensin 2 Tak
BAB III. PENUTUP...........................................................................................................
A.    Kesimpulan
B.     Saran
DAFTAR PUSTAKA   ......................................................................................................



 
BAB I
PENDAHULUAN

A.    Latar Belakang
Dalam kehidupan sehari-hari kita banyak sekali menjumpai atau bahkan menggunakan peralatan-peralatan yang bermesin. Salah satu diantara mesin-mesin tersebut adalah mesin Bensin. MotorBensin dikategorikan dalammesin pembakaran dalam (internalcombustionengine).Mesin Bensin dapat diklasifikasikan menjadi 2 yaitu mesin Bensin 4 tak dan 2 tak.
Melalui makalah ini, kami mencoba untuk membahastentang mesin bensin, prinsip kerja, kelebihan dan kekurangan dari mesin bensin itu sendiri, baik mesin bensin 4 tak ataupun mesin bensin 2 tak.

B.     Pembatasan Masalah
Melihat dari latar belakang masalah serta memahami pembahasannya maka penulis dapat memberikan batasan-batasan pada :
1.      Pengertian mesin bensin
2.      Siklus otto
3.      Prinsip kerja mesin bensin 4 tak dan 2 tak
4.      Sistem pengapian mesin bensin
5.      Mesin bensin 4 tak
6.      Mesin bensin 2 tak

C.     Tujuan

1.      Mengetahui definisi mesin bensin.
2.      Mengetahui siklus otto pada mesin bensin.
3.      Mengetahui prinsip kerja mesin bensin 4 tak dan 2 tak.
4.      Mengetahui sistem pengapian pada mesin bensin.


BAB II
PEMBAHASAN
a.      Pengertian Mesin Bensin
Motor bakar merupakan salah satu jenis mesin kalor yang banyak dipakai saat ini. Sedangkan mesin kalor adalah mesin yang menggunakan energi panas untuk melakukan kerja mekanis atau mengubah tenaga panas menjadi tenaga mekanis. Energi atau tenaga panas tersebut diperoleh dari hasil pembakaran.Ditinjau dari cara memperoleh tenaga panas, mesin kalor dapat dibedakan menjadi dua yaitu mesin dengan pembakaran dalam dan mesin dengan pembakaran luar.
Mesin pembakaran dalam adalah mesin yang melakukan proses pembakaran bahan bakar di dalam mesin tersebut dan gas pembakaran yang terjadi berfungsi sebagai fluida kerja. Mesin pembakaran dalam umumnya disebut motor bakar. Jadi motor bakar adalah mesin kalor yang menggunakan gas panas hasil pembakaran bahan bakar di dalam mesin untuk melakukan kerja mekanis. Mesin pembakaran luar adalah mesin di mana proses pembakaran bahan bakar terjadi di luar mesin dan energi panas dari gas pembakaran dipindahkan ke fluida mesin melalui beberapa dinding pemisah, misal ketel uap.

Mesin bensin merupakan salah satu jenis motor bakar dalam yang menggunakan bahan bakar bensin dengan sistem pengapian menggunakan busi.

b.      Siklus Otto
Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto.
Secara thermodinamika, siklus ini memiliki 4 buah proses thermodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap). Untuk lebih jelasnya dapat dilihat diagram tekanan (p) vs temperatur (V) berikut:
otto2
Proses yang terjadi adalah :
1-2 : Kompresi adiabatis
2-3 : Pembakaran isokhorik
3-4 : Ekspansi / langkah kerja adiabatis
4-1 : Langkah buang isokhorik
Beberapa rumus yang digunakan untuk menganalisa sebuah siklus Otto adalah sebagai berikut :
1. Proses Kompresi Adiabatis
T2/T1 = r^(k-1);  p2/p1 = r^k

2. Proses Pembakaran Isokhorik
T3 = T2 + (f x Q / Cv) ;   p3 = p2 ( T3 / T2)
 3. Proses Ekspansi / Langkah Kerja
T4/T3 = r^(1-k) ;   p4/p3 = r^(-k) 
4. Kerja Siklus
W = Cv [(T3 - T2) - (T4 - T1)]  
5. Tekanan Efektif Rata-rata (Mean Effective Pressure)
pme = W / (V1 – V2)
6. Daya Indikasi Motor
Pe = pme . n . i . (V1-V2) . z
 Dimana parameter – parameternya adalah :
p = Tekanan gas (Kg/m^3)
T = Temperatur gas (K; Kelvin)
V = Volume gas (m^3)
r = Rasio kompresi (V1 – V2)
Cv = Panas jenis gas pada volume tetap ( kj/kg K) 
k = Rasio panas jenis gas (Cp/Cv)
f = Rasio bahan bakar / udara
Q = Nilai panas bahan bakar (kj/kg)
W = Kerja (Joule)
n = Putaran mesin per detik (rps)
i = Index pengali;  i=1 untuk 2 tak dan i=0.5 untuk 4 tak
z = Jumlah silinder
P = Daya ( Watt )

c.       Prinsip Kerja Mesin Bensin
Berikut akan diterangkan mengenai prinsip kerja mesin bensin. Pertama, campuran udara dan bensin di hisap kedalam silinder, kemudian dikompresikan oleh torak saat begerak naik, apabila campuran udara dan bensin terbakar dengan adanya api dari busi yang panas sekali, maka akan menghasilkan tekanan gas pembakaran yang besar di dalam silinder. Tekanan gas pembakaran ini mendorong torak kebawah, yang menggerakan torak turun naik dengan bebas di dalam silinder. Dari gerak lurus (naik turun) torak dirubah menjadi gerak putar pada poros engkol melalui batang torak. Gerak putar inilah yang menghasilkan tenaga pada mesin.
Posisi tertinggi yang di capai torak di dalam silinder di sebut titik mati atas (TMA), dan posisi terendah yang di capai torak disebut titik mati bawah (TMB). Jarak bergeraknya torak antara TMA dan TMB di sebut langkah torak (stroke).
Campuran udara dan bensin dihisap kedalam silinder dan gas yang telah terbakar harus keluar, dan ini harus berlangsung secara tetap. Pekerjaan ini dilakukan dengan adanya gerak torak yang turun naik di dalam silinder. Proses menghisap campuran udara dan bensin kedalam silinder, mengkompresikan, membakarnya, dan mengeluarkan gas bekas dari silinder, disebut satu siklus.

Sistem bahan bakar
Sistem bahan bakar (fuel system) terdiri dari beberapa komponen, dimulai dari tangki bahan bakar (fuel tank) sampai pada charcoal canister. Bahan bakar yang tersimpan dalam tangki dikirim oleh pompa bahan bakar (fuel pump) ke karburator melalui pipa-pipa dan selang-selang.kotoran dan benda-benda lainya dikeluarkan dari bahan bakar oleh saringan (fuel filter).
Karburator menyalurkan ke mesin sejumlah bahan bakar yang dibutuhkan berupa campuran udara dan bahan bakar. Sejumlah gas HC yang timbul di dalam tangki dikurangi oleh charcoal canister. Bensin di alirkan dari tangki melalui saringan, selang dan pipa-pipa hisap (suction tube). Bensin yang sudah disaring dikirim ke karburator oleh pompa bahan bakar, dan karburator mencampurnya dengan udara dengan suatu perbandingan tertentu menjadi campuran udara dan bahan bakar. Sebagian campuran udara dan bahan bakar menguap dan menjadi kabut saat mengalir melalui intake manifold ke silinder.

Campuran Udara dan Bahan Bakar
Bahan bakar yang dikirim kedalam silinder untuk mesin harus ada dalam Kondisi mudah terbakar agar dapat menghasilkan efesiensi tenaga yang maksimum. Bensin sedikit sulit terbakar, bila tidak dirubah kedalam bentuk gas. Bensin tidak dapat terbakar dengan sendirinya, harus dicampur dengan udara dalam perbandingan yang tepat. Untuk mendapatkan campuran udara dan bahan bakar yang baik, uap bensin harus bercampur dengan sejumlah udara yang tepat. Perbandingan campuran udara juga mempengaruhi pemakaian bahan bakar.

Perbandingan Udara Dengan Bahan Bakar
Perbandingan udara dengan bahan bakar dinyatakan dalam volume atau berat dari bagian udara dan bahan bakar. Pada umumnya, perbandingan udara dan bahan bakar dinyatakan berdasarkan perbandingan berat udara dengan berat bahan bakar. Bensin harus dapat terbakar keseluruhannya di dalam ruang bakar untuk menghasilkan tenaga yang besar pada mesin. Perbandingan udara dan bahan bakar dalam teorinya adalah 15:1, yaitu 15 untuk udara berbanding 1 untuk bensin.
Tetapi pada kenyataannya, mesin menghendaki campuran udara dan bahan bakar dalam perbandingan yang berbeda-beda tergantung pada temperatur, kecepatan mesin, beban, dan kondisi lainya. Pada table di bawah ini diperlihatkan perbandingan udara dan bahan bakar yang dibutuhkan sesuai dengan kondisi mesin.

Proses pembakaran
Campuran bahan bakar-udara didalam selinder motor bensin harus sesuai dengan syarat busi, yaitu jangan terbakar sendiri. Ketika busi mengeluarkan api listrik, yaitu pada saat beberapa derajat engkol sebelum torak mencapai TMA, campuran bahan bakar-udara disekitar itulah mula-mula terbakar. Kemudian nyala api merambat kesegala arah dengan kecepatan yang sangat tinggi (25-50 m/detik), menyalakan campuran yang dilaluinya sehingga tekanan gas didalam silinder naik, sesuai dengan jumlah bahan bakar yang terbakar.
Pembakaran yang merambat dengan cepat itu, temperaturnya dapat melampaui temperatur penyalaan sendiri sehingga akan terbakar dengan cepatnya. Proses terbakar sendiri dari bagian campuran yang terakhir (terjatuh dari busi) dinamai detonasi.
Detonasi yang berulang-ulang dalam waktu yang cukup lama dapat merusak bagian ruang bakar, terutama bagian tepi dari kepala torak tempat detonasi terjadi.Disamping itu detonasi mengakibatkan bagian ruang bakar (misalnya busi atau kerak yang ada)sangat tinggi temperaturnyaatau pijar, sehingga dapat menyalakan campuran bahan bakar-udara sebelum waktunya (pranyala). Detonasidapat mengurangi daya dan efisiensi mesin, sedangkan tekanan maksimum gas pembakaranpun akan bertambah tinggi. Karena itu, detonasi yang dahsyat tidak di kehendaki dan harus dicegah. Maka dari itu seluruh campuran bahan bakar-udara harus dinyalakan oleh nyala api yang berasal dari busi.
Berikut ini beberapa cara untuk mencegah detonasi :
1.    Mengurangi tekanan dan temperatur bahan bakar-udara yang masuk kedalam silinder.
2.      Mengurangi perbandingan kompresi.
3.    Memperlambat saat penyalaan.
4.   Memperkaya yaitu menaikan perbandingan campuran bahan bakar-udara
5.  Menaikan kecepatan torak atau putaran poros engkol, untuk memperoleh arusturbulen pada   campuran didalam silinder yang mempercepat rambatan nyala api.
6.    Memperkecil diameter torak untuk memperpendek jarak yangdi tempuh olehnyala api dari busi kebagian yang terjauh. Hal ini bias juga di capai jikadipergunakan busi lebih dari satu.

Sistem Pengapian Pada Mesin Bensin
Sistem pengapian motor bensin memilik prinsip kerja yang beragam sesuai dengan jenis dan model sistem pengapian yang digunakan. Untuk sistem pengapian Motor biasanya terdiri atas 2 macam yakni Sistem Pengapian ACdan Sistem Pengapian DC. Untuk sistem pengapian Motor sebenarnya bisa kita modifikasi dari sistem pengapian AC ke sistem pengapian DC atau sebaliknya.
1. Sistem Pengapian AC atau yang lebih kita kenal dengan CDI(Capasitor Discharge Ignition) merupakan sistem dimana pengapian ke busi dibangkitkan dari tegangan AC dari spul motor yang di triger oleh sirkuit elektronik(CDI) sesuai signal yang di terima dari pulser.
2. Sistem Pengapian DC. Pada sistem pengapian Dc ini lebih mirip dengan sistem pengapian mobil secara elektronik, yakni TCI(transistorized Ignition System), dengan sistem TCI tegangan tinggi yang di bangkitkan dari koil benar2 tegangan DC 12volt yang di driver oleh sebuah transistor sesuai data dari sumber signal alias pulser.
Semua sistem pengapian motor yang peletakan pulser berada pada askruk pasti menimbulkan percikan busi secara 2 kali proses yang berbeda dalam 1 siklus kerja motor 4 tak, yakni pada proses kompresi dan proses buang.

Mesin Bensin 4 Tak dan 2 Tak
Klasifikasi Motor Bensin
Menurut prinsip kerjanya motor bensin dapat dibedakan menjadi dua jenis yaitu motor bensin 2 langkah dan motor bensin 4 langkah.
1. Motor Bensin 2 Langkah
Motor bensin 2 langkah adalah motor bensin yang setiap siklus kerjanya dalam 2 langkah torak atau 1 kali putaran poros. Prinsip kerja motor bensin 2 langkah dalam 1 kali siklus kerja dapat dijelaskan sebagai berikut :
HISAP & KOMPRESI EKSPANSI BUANG
Torak bergerak dari TMB ke TMA, saluran masuk terbuka dan campuran bensin dan udara masuk ke ruang engkol. Sementara itu di atas torak terjadi langkah kompresi sehingga menghasilkan suhu dan tekanan yang tinggi dan mengakibatkan torak terdorong ke TMB. Pada saat torak menuju TMB, torak menutup saluran masuk dan memperkecil ruang engkol. Hal ini mengakibatkan campuran bensin dan udara bergerak ke atas torak melalui saluran bilas. Pada saat torak sampai TMB, saluran bilas dan saluran buang terbuka sehingga campuran bensin dan udara dari ruang engkol masuk ke ruang bakar.
Sifat-sifat motor bensin 2 langkah :
·         Konstruksi lebih sederhana dan biaya pembuatan lebih murah.
·         Pembuangan gas kurang sempurna dan kesulitan untuk mempertinggi kecepatan.
·         Dengan ukuran langkah torak dan kecepatan yang sama akan menghasilkan daya yang lebih besar.

2. Motor Bensin 4 Langkah
Motor Bensin 4 Langkah adalah motor bensin yang setiap siklus kerjanya dalam 4 langkah torak atau 2 kali putaran poros. Adapun rangkaian proses dan langkah-langkah torak adalah sebagai berikut :
1.      Proses Pengisian
Pengisian campuran bensin dan udara terjadi pada langkah pertama yaitu saat torak bergerak dari TMA ke TMB, di mana katup masuk terbuka dan katup buang tertutup.
2.      Proses Kompresi
Terjadi pada langkah kedua. Yaitu torak bergerak dari TMB ke TMA. Pada langkah ini kedua katup tertutup.
3.      Proses Pembakaran
Beberapa saat menjelang akhir kompresi, saat sebelum torak mencapai TMA, busi memercikkan bunga api dan membakar campuran bensin dan udara. Akibatnya temperatur dan tekanan gas pembakaran dalam silinder meningkat.
4.      Proses Kerja/Ekspansi
Proses ini terjadi pada langkah ketiga yaitu torak bergerak dari TMA ke TMB. Tekanan yang tinggi hasil pembakaran digunakan untuk mendorong torak ke bawah dan memutar poros engkol untuk melakukan kerja mekanik.
5.      Proses Pembuangan
Terjadi pada langkah keempat, torak bergerak dari TMB ke TMA. Pada langkah ini katup buang terbuka dan katup masuk tertutup. Gas hasil pembakaran dibuang keluar silinder melalui katup buang.

Sifat-sifat motor bensin 4 langkah :
·         Dalam 4 langkah torak terdapat 1 langkah ekspansi.
·         Pemakaian bahan bakar lebih hemat dan kerugian dari gas-gas yang terbuang kecil sekali.
·         Konstruksinya lebih rumit dan biaya pembuatan lebih mahal.
·         Dengan ukuran piston dan putaran yang sama menghasilkan daya yang lebih kecil.
·         Pembuangan gas lebih sempurna.

2.4. Keuntungan Motor Bensin
Dibandingkan dengan motor diesel, motor bensin memiliki beberapa keuntungan di antaranya :
1.      Tekanan kompresi yang dibutuhkan lebih kecil.
2.      Konstruksi mesin lebih kecil dan tidak perlu sekokoh mesin diesel.
3.      Berat mesin lebih ringan.
4.      Getaran yang dihasilkan lebih kecil dengan suara yang halus.
5.      Tidak memerlukan baterai terlalu besar pada awal penyalaan.
6.      Konstruksi ruang bakar lebih sederhana.

2.5. Proses Keliling Motor Bensin 4 Langkah
Yang dimaksud dengan proses keliling pada motor bensin 4 langkah berdasarkan proses kerja motor adalah suatu keadaan gas di dalam silinder motor dimulai dari pengisian gas di dalam silinder dan diakhiri dengan pembuangan gas hasil pembakaran. Di dalam silinder hasil pembakaran yang berupa panas diubah menjadi usaha desak di atas penghisap. Oleh karena volume dan tekanan di dalam silinder besarnya tidak sama, maka keadaan di dalam silinder itu dapat dilukiskan dalam bentuk diagram P-V. Diagram P-V yaitu garis-garis yang melukiskan hubungan antara tekanan dan volume gas dengan segala perubahannya.

2.5.1. Diagram P-V Teoritis Motor Bensin 4 Langkah
Diagram P-V teoritis pada proses pembakaran bahan bakar motor bensin 4 langkah adalah sebagai berikut:
0  1 : Garis Hisap
Torak bergerak ke kanan untuk langkah isap. Pada kecepatan pengisap tertentu, garis akan berada di bawah garis atm, jadi ada tekanan bawah atau vakum.
1  2 : Garis Kompresi
Volume gas dimampatkan pada waktu penghisap bergerak ke sisi tutup. Tekanan naik hingga mencapai 7 atm sebelum titik mati atas (TMA) busi dinyalakan.
2  3 : Garis Pembakaran
Pembakaran terjadi dengan cepat sekali, suhu gas naik, sedangkan dalam waktu yang sangat cepat volume gas hanya berubah sedikit. Tekanan meningkat maksimum 28 atm.
3  4 : Garis Usaha atau Garis Ekspansi
Selama ini gas pembakaran mendesak penghisap dan volume gas tersebut membesar maka tekanan akan turun.


4  1 : Pembuangan Pendahuluan
Tekanan turun sesuai dengan tekanan atmosfer, sedangkan besar gas pembakaran (70 %) telah dikeluarkan.
1  0 : Gas Pembuangan
Sisa gas didesak keluar oleh penghisap, karena kecepatan gerak penghisap, terjadilah kenaikan tekanan sedikit di atas 1 atm.

Diagram P-V Sebenarnya Motor Bensin 4 Langkah
Proses ini sering disebut proses otto yaitu proses yang terdapat pada motor bensin 4 langkah, di mana pembakarannya menggunakan busi dan proses dan proses pembakaran terjadi dengan volume tetap.
Gambar 2.5. Diagram P-V Sebenarnya Motor Bensin 4 Langkah ..........

Keterangan:
0 – a : Langkah hisap
Pada waktu torak bergerak ke kanan, udara bercampur bahan bakar masuk ke dalam silinder. Karena torak dalam keadaan bergerak, maka tekanannya turun sehingga lebih kecil daripada tekanan udara luar, begitu juga suhunya. Garis langkah hisap dapat dilihat pada diagram di atas. Penurunan tekanan ini bergantung pada kecepatan aliran. Pada motor yang tidak menggunakan super charge tekanan terletak antara 0,85-0,9 atm terhadap tekanan udara luar.
a  b : Langkah kompresi
Dalam proses ini kompresi berjalan adiabatik.
b  c : Langkah Pembakaran
Pembakaran terjadi pada volume tetapsehingga suhu naik.

c  d : Langkah Ekspansi atau Langkah Kerja
Pada langkah ini terjadi proses adiabatik karena cepatnya gerak torak sehingga dianggap tidak ada panas yang keluar maupun masuk.
d  a : Langkah Pembuangan Pendahuluan
Terjadi proses isokhorik yaitu panas keluar dari katup pembuangan.
a – 0 : Langkah Pembuangan
Sisa gas pembakaran didesak keluar oleh torak. Karena kecepatan gerak torak, terjadilah kenaikan tekanan sedikit di atas 1 atm.

2.6. Termodinamika
Dalam perhitungan thermodinamika, maka kita harus mengetahui diagram proses pembakaran.
1.      Keadaan titik a
Keadaan awal kompresi, di mana torak bergerak dari TMA ke TMB dan mendorong udara pembakaran.
1.      Temperatur awal kompresi (Ta)
Adalah temperatur campuran bahan bakar yang berada dalam silinder saat torak melakukan langkah kompresi.
..................................

Dimana :
Ta = Temperatur awal kompresi ( oK)
To = Temperatur udara luar ( oK)
Tr = temperatur gas bekas ( oK)
γr = koefisien gas bekas
tw = Kenaikan udara karena menerima suhu dari dinding


2.      Efisiensi pemasukan (Charge Efficiency)
Adalah perbandingan jumlah pemasukan udara segar sebenarnya yang dikompresikan di dalam silinder mesin yang sedang bekerja dan jumlah volume langkah pada tekanan dan temperatur udara luar (Po dan To).
...............................
Dimana :
ε = Perbandingan kompresi
Po = Tekanan udara luar (kg/cm2)
Pa = Tekanan awal kompresi (kg/cm2)

2.      Keadaan titik b
Adalah akhir langkah kompresi di mana tekanan dan temperatur udara pembakaran sangat tinggi dan merupakan awal proses pembakaran bahan bakar.
1. Tekanan Akhir Kompresi
Adalah tekanan campuran bahan bakar silinder pada akhir langkah kompresi.
Pc = Pa. Îµ n1 …...……………….
Dimana :
Pc = Tekanan akhir kompresi (kg/cm2)
n1 = Koefisien Polytropic
2. Temperatur Akhir Kompresi
Adalah temperatur campuran bahan bakar silinder pada akhir langkah kompresi.
Tc = Ta. Îµ (n1 – 1)……………………

3.      Keadaan titik puncak c
Pada keadaan ini proses pembakaran terus berlangsung pada volume tetap.
1.      Nilai Kalor Pembakaran Bahan Bakar (Ql)
Adalah jumlah panas yang mampu dihasilkan dalam pembakaran 1 Kg bahan bakar. Untuk bensin (gasoline) besarnya Ql = 9530 Kkal/ Kg.
2.      Kebutuhan Udara Teoritis
Adalah kebutuhan udara yang diperlukan untuk membakar bahan bakar jika jumlah oksigen di udara sebesar 21 % sesuai dengan perhitungan.
................................
Dimana :
Lo = Kebutuhan udara teoritis (mol/kg)
C = Kandungan Karbon (%)
H = Kandungan Hydrogen (%)
O = Kandungan Oksigen (%)
3.      Koefisien Pembakaran
Adalah koefisien yang menunjukkan perubahan molekul yang terjadi selama proses pembakaran bahan bakar.
....................................

Dimana:
μO = Koefisien pembakaran
Mg = Jumlah molekul yang terbakar
Lo’ = Jumlah udara sebenarnya untuk pembakaran bahan bakar (mol/kg)
α= koefisien kelebihan udara
4.      Koefisien Pembakaran Molekul
Menunjukkan perubahan molekul yang terjadi sebelum dan sesudah pembakaran.
...................................
5.      Temperatur Pembakaran Pada Volume Tetap
Adalah temperatur hasil gas pembakaran campuran bahan bakar untuk motor bensin.
.........

Dimana :
Tz = Temperatur pembakaran pada volume tetap atau temperatur pada akhir pembakaran (oK)
Ï‚2 = Heat Utilization Coefficient (Koefisien Perbandingan Panas)
Q1 = Nilai pembakaran bahan bakar (Kkal/kg)
Mcv = Kapasitas udara panas pada volume tetap (Kkal/mol per oC)
Mcp = Kapasitas panas dari gas pada tekanan tetap (Kkal/mol per oC)
6.      Tekanan Akhir Pembakaran
.................................11

Dimana :
Pz = Tekanan akhir (kg/cm2)
7.      Perbandingan Tekanan Dalam Silinder Selama Pembakaran
Adalah rasio yang menunjukkan perbandingan tekanan akhir pembakaran dengan tekanan awal pembakaran.
.............................


4.      Keadaan titik d
Keadaan ini merupakan langkah akhir kompresi.
1.      Perbandingan Ekspansi Pendahuluan
Adalah rasio yang menunjukkan perubahan yang terjadi pada gas hasil pembakaran campuran bahan bakar pada awal langkah kompresi.
...............................
2.      Perbandingan Kompresi Selanjutnya
Adalah rasio yang menunjukkan perubahan pada gas hasil pembakaran selama langkah ekspansi.
...............................

3.      Tekanan Gas Pada Akhir Ekspansi
...............................

4.      Temperatur Akhir Ekspansi
...............................

5.      Tekanan Rata-rata Indikator Teoritis
Adalah besarnya tekanan rata-rata yang dihasilkan oleh pembakaran campuran bahan bakar yang bekerja pada torak.


...............................
6.      Tekanan Rata-rata Indikator Sebenarnya
Adalah besar tekanan rata-rata yang dihasilkan dari pembakaran campuran bahan bakar.
Pi = Pit.φ ...............................
Dimana :
φ = faktor koreksi (0,95 – 0,98)
7.      Tekanan Efektif Rata-rata
Adalah besarnya tekanan rata-rata efektif yang bekerja pada permukaan torak
Pe = ηm. Pi ...............................
Dimana :
ηm = rendemen mekanik
2.7. Faktor-faktor Kemampuan Motor
Faktor-faktor yang menentukan motor dalam beroperasiadalah sebagai berikut:
1.      Volume Silinder
Volume Silinder pada motor adalah volume dari jumlah silinder pada motor tersebut. Volume silinder ditentukan ketika torak pada posisi TMB.
Vd = π/4. D2. L. Z ...............................
Dimana :
Vd = Volume yang ditempuh oleh torak selama melakukan langkah kerja
D = Diameter silinder
L = Langkah torak
z = Jumlah silinder
2.      Daya Indikator
Adalah panas pembakaran bahan bakar di atas torak yang dikurangi kerugian-kerugian panas karena gas buang.
................................

Dimana :
Ni = Daya indikator (HP)
Pi = Tekanan rata-rata indikator (kg/cm2)
D = Diameter silinder (m)
L = Langkah torak (m)
N = Putaran mesin
i = Jumlah silinder
z = Jumlah pembakaran tiap langkah, untuk motor 4 langkah = 2
3.      Daya Efektif
Adalah daya indikator dikurangi dengan kerugian-kerugian gesekan, di mana besar kecilnya kerugian akan mempengaruhi rendemen mekanik. Daya efektif ini merupakan tenaga yang menggerakkan poros engkol.
Ne = Ni. ηm ...............................
4.      Pemakaian Bahan Bakar
1.      Pemakain Bahan Bakar Indikator
Adalah jumlah bahan bakar yang diperlukan untuk menghasilkan tekanan indikator.
...............................

2.      Konsumsi bahan bakar spesifik efektif (F)
Adalah jumlah bahan bakar yang dibutuhkan untuk menghasilkan kerja efektif.
...............................

3.      Pemakain Bahan Bakar Tiap Jam
Fh = Fe. Ne ...............................

2.8. Perhitungan Neraca Panas
Persamaan keseimbangan neraca panas pada mesin adalah :
Qf = Qe + Qcool + Qeg + Qrest ...............................
1. Panas yang didapat dari pembakaran
Qf = Fh. Q1 (Kkal/jam) ...............................
Dimana :
Q1 = Nilai pembakaran terendah bahan bakar (Kkal/ kg)
Fh = Kebutuhan bahan bakar tiap jam
2. Panas yang berguna pada efektif mesin
Qe = 632. Ne (Kkal/jam) ...............................
3. Panas yang terbawa oleh media pendingin
Qcool = 0,31 Qf ...............................
4. Panas yang terbawa karena pancaran dan gesekan (sisa)
Qres = Qf – Qe – Qcool – Qeg ...............................

Kelebihan dan Kekurangan Mesin Bensin 4 tak dan 2 tak

KONSTRUKSI DASAR MESIN 2 TAK




Mesin 2 langkah hanya memerlukan satu kali putaran poros engkol untuk menyelesaikan satu siklus pembakaran.Campuran bahan bakar dan udara dikompresikan 2 kali setiap putaran.
Pada mesin 2 tak piston juga berfungsi sebagai katup.

KEUNTUNGAN DAN KERUGIAN MESIN 2 TAK
Keuntungan:
1.      Pembakaran terjadi pada setiap putaran poros engkol, sehingga putaran poros engkol lebih halus dan putaran mesin menjadi lebih halus.
2.      Konstruksinya sederhana (tidak terdapat mekanisme katup)
3.      Tenaga yang dihasilkan lebih besar
Kerugian: 

1.      Langkah masuk dan buang lebih pendek, sehingga terjadi kerugian langkah tekanan kembali gas buang lebih tinggi.
2.      Karena pada bagian silinder terdapat lubang-lubang, timbul gesekan antara ring piston dan lubang, sehingga ring piston lebih cepat aus.
3.      Mudah terjadi panas pada silinder karena lubang buang terdapat pada bagian silinder
4.      Konsumsi bahan bakar dan pelumas lebih banyak
KONSTRUKSI DASAR MOTOR 4 TAK
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjgsyvnqg0VCeeEDuHfCWFqWqTriOfYfPdolV_k_e_3fzYDfIvHGrNClGyZfqtCmP7_95hnT7JEzz5j7XDwolL88UDkyTQVTZclMUjmzHdg4ez8tnuMSdErVmbBGEZWrPd4kTaiCCyKXoM/s320/konstruksi+4+tak.PNG
Konstruksi Motor 4 tak

Mesin 4 tak memerlukan dua kali putaran poros engkol untuk menyelesaikan satu siklus pembakaran di dalam silinder.Terdapat mekanisme katup.

KEUNTUNGAN DAN KERUGIAN MOTOR 4 TAK
Keuntungan:
1.      Kerugian langkah karena tekanan balik lebih kecil, sehingga pemakaian bahan bakar lebih hemat
2.      Pada putaran rendah lebih baik dan panas lebih rendah
3.      Langkah pemasukan dan buang lebih panjang sehingga efisiensi pemasukan lebih baik
Kerugian
1.      Mekanisme katup lebih banyak, sehingga perawatannya lebih sulit
2.      Suara mekanis lebih gaduh
3.      Langkah kerja terjadi dengan 2 putaran poros engkol, sehingga keseimbangan putar tidak stabil































BAB III
PENUTUP

A. Kesimpulan
·         Mesin bensin adalah jenis motor pembakaran dalam yang menggunakan bahan bakar bensin dengan sistem pengapian menggunakan busi.
·         Mesin bensin adalah mesin yang dikategorikan dalam motor bakar torak dan mesin pembakaran dalam (internalcombustionengine).
·         Prinsip kerja mesin bensin secara umum dibagi menjadi :
1.      Mesin bensin 4 tak
2.      Mesin bensin 2 tak
·         KEUNTUNGAN DAN KERUGIAN MESIN 2 TAK
Keuntungan:
1.      Pembakaran terjadi pada setiap putaran poros engkol, sehingga putaran poros engkol lebih halus dan putaran mesin menjadi lebih halus.
2.      Konstruksinya sederhana (tidak terdapat mekanisme katup)
3.      Tenaga yang dihasilkan lebih besar
Kerugian: 

1.      Langkah masuk dan buang lebih pendek, sehingga terjadi kerugian langkah tekanan kembali gas buang lebih tinggi.
2.      Karena pada bagian silinder terdapat lubang-lubang, timbul gesekan antara ring piston dan lubang, sehingga ring piston lebih cepat aus.
3.      Mudah terjadi panas pada silinder karena lubang buang terdapat pada bagian silinder
4.      Konsumsi bahan bakar dan pelumas lebih banyak
·         KEUNTUNGAN DAN KERUGIAN MOTOR 4 TAK
Keuntungan:
1.      Kerugian langkah karena tekanan balik lebih kecil, sehingga pemakaian bahan bakar lebih hemat
2.      Pada putaran rendah lebih baik dan panas lebih rendah
3.      Langkah pemasukan dan buang lebih panjang sehingga efisiensi pemasukan lebih baik
Kerugian
1.      Mekanisme katup lebih banyak, sehingga perawatannya lebih sulit
2.      Suara mekanis lebih gaduh
3.      Langkah kerja terjadi dengan 2 putaran poros engkol, sehingga keseimbangan putar tidak stabil

B. Saran



DAFTAR PUSTAKA


No comments:

Post a Comment